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Details are given of a procedure to evaluate the spin-Hamilto-
nian (SH) parameters and the linewidth from a polycrystalline
EPR spectrum by using a least-squares fitting (LSF) technique in
conjunction with numerical diagonalization of the SH matrix. The
required resonance line positions are computed rather quickly
using a homotopy technique, in which the position at an external
magnetic field (B) orientation (0, ¢) is used as the initial value in
a LSF procedure to estimate the position at an infinitesimally close
B-orientation, (0 + 80, ¢ + &¢). The resonance line positions are
calculated successively in this procedure for all orientations of B
over a grid of (0, ¢) values for the unit sphere. The eigenvectors of
the SH matrix are used to calculate the intensities of the EPR lines
exactly for each orientation of B. Details are given of how to
compute rigorously the first and second derivatives of the x’-
function with respect to the SH parameters and the linewidth
using the eigenvalues and eigenvectors of the spin-Hamiltonian
matrix for a polycrystalline spectrum required in the LSF proce-
dure. It is explained how this technique is generalized to include
two or more magnetically inequivalent paramagnetic species, as
well as how it is used for the simulation of other EPR-related
spectra. The procedure is illustrated by evaluation of the Mn** SH
parameters and Lorentzian linewidth from the 249.9-GHz EPR
spectrum of Mn(y-picoline),l,. © 1999 Academic Press

I. INTRODUCTION

calculate the required first and second derivatives ofythe
function as described irt}.

For many molecules, such as metalloproteiB it is not
possible to grow single crystals of sufficient size to enabl
them to be mounted with their axes oriented in chosen dire
tions for angular variation of EPR spectrum for varying orien
tations ofB with respect to the crystal symmetry axis in orde
to evaluate SH parameters accurately. Moreover, it is n
always possible to rotate either the crystal or the magnei
field, for experimental reasons or because the orientations
the axes change when structural phase-transitions occur, ar
is not possible to reorient the crystal inside the cryostat at lo
temperatures. It is then preferable to record a polycrystallit
(powder) spectrum. The possibility of fitting a large number ¢
EPR resonance line positions simultaneously is then excluds
since only one spectrum, insensitive to the orientation of t
external magnetic field, is available for a polycrystalling
sample.

So far, SH parameters have been estimated for the case
larger spins by the use of brute-force techniques, wherein
polycrystalline spectrum is simulated by arbitrarily adjustin
the parameter values. The set of values that provides the m
reasonable fit is then considered to be the set representing
best values of the SH parameters. Also, the intensities we
calculated using the zero-order wavefunctions, insensitive
the orientation ofB, and perturbation expressions were use

It is of considerable interest to be able to accurately evaludite the eigenvalues which may not be quite precise when tl

the spin-Hamiltonian (SH) parameters characterizing paramagientation ofB and of the symmetry axis of the single crysta
netic species from polycrystalline EPR spectra. The polycrydeviate significantly from each other and the zero-field splittin
talline spectrum is the superposition of the monocrystallif@FS) parameterD, is relatively large. Markham and Reed
spectra expected for uniform distribution &(0, ¢) with (3), Zhang and Buckmasted), and Coffino and Peisaclb)(
respect to the symmetry axis of the single crystal where ohave discussed the computational strategies involved in t
exists. For polycrystalline samples, it is possible to achievesanulation of polycrystalline spectra, especially using the m:
precision similar to that for single crystals by following therix diagonalization 4, 5. Recently, the homotopy technique,
procedure described in this paper, using the least-squai@gether with the diagonalization of the SH matrix (referred t
(LSF) technique. In this procedure, a large number of reshereafter as the HTMD method), has been proposed for a f
nance line positions, obtained for a uniform distribution odimulation of an EPR polycrystalline spectrug).(
orientations of the external magnetic fieB)(with respect to It is desirable that the parameter values are estimated by 1
the single-crystal symmetry axis, are fitted simultaneously tse of a mathematical criterion, in which all the SH paramete
improve significantly the precision in the estimated values ahd linewidth values are varied simultaneously in a systema
the SH parameters. The procedure has been made rigorousnayiner, using a LSF technique. This paper provides the detz
using the eigenvalues and eigenvectors of the SH matrixdba LSF procedure which can be used to estimate SH para
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180 SUSHIL K. MISRA

eter values from a polycrystalline spectrum to estimate the firstThe integral in Eq. [2.1] describing a polycrystalline spec
and second derivatives of thgé-function with respect to the trum can be divided up into discrete sums:

SH parameters and the linewidth by an exploitation of the
HTMD method. Section Il describes briefly the details of how
to simulate a polycrystalline spectrum by the HTMD tech-
nigue, while Section Il deals with the estimation of the pa-
rameters from a polycrystalline spectrum using the LSF tech- ) ) ,
nique, including the details of how to calculate the first and Ed- [2-2], the values of; are in the interval O tar/2, while
second derivatives of thg?function with respect to the pa- 110S€ Of¢; are in 0 to 2r, using a uniform grid of §;, )
rameters. Since analytic expressions are not available for #fUes: and sird; takes into account the assumed uniforn

eigenvalues and spectral intensities, this is accomplished gjtriPution of the crystallites constituting the polycrystalline
numerical techniques employing the eigenvalues and eigenve@mPIe- The method for determining thg, () grid is given
(6). The summation ovel takes into account the probability

tors of the SH matrix. Specific details are provided here for the ) ! o
Gaussian and Lorentzian resonance lineshapes. The rec8fi1® @mplitude of absorption at the magnetic field vaie
mended procedure for the application of the LSF technique $§€ t© the lineshape functidf(B,, B) for theith transition for

estimate SH parameter and linewidth values is outlined ﬁﬁe B-Tlleld lorlentatlorr: 05, ¢)- Furtherr,] it has beerl1 assu][nec
Section IV. Extension to the case of two magnetically ifhat all spins are characterized by the same values of sp
miltonian parameters, i.e., their magnetic tensors are t

equivalent paramagnetic species is discussed in Section V. it ) ; e
illustrative example, involving the evaluation of Knparam- S&@Me except for the orientations of their principal axes due
eter values from a 249.9-GHz EPR spectrum of polycrystalliiB® polylc.rystalllne n'a.ture o_f the sample. N
Mn(y-picolinell,, is given in Section VI. Discussion and Transition probability, P(i,0, ¢, v). The transition prob-

S(B,, v =C >, P(i, 0, ¢;, vo F(B;, BYsin 6. [2.2]

i,0),¢;

concluding remarks are given in Section VIII. ability
II. SIMULATION OF POLYCRYSTALLINE SPECTRUM P@, 0, @, v o« (P;|(ByS, + By,S, + By,S)| D)2,
BY THE USE OF HOMOTOPY [2.3]

This section provides an overview of how to simulate awhereS, andB,,; (a¢ = X, y, 2) represent the components of
EPR polycrystalline spectrum using the HTMD techniquehe electron spin operatd, and the modulation magnetic field
(Misra (6) has given complete details about this new tectB,. |®,) and|®,) are the eigenvectors of the spin-Hamilto-
nique.) This spectrum is the summation of single-crystal spedan matrix, H, corresponding to the energy levels of
tra computed for a large number of uniformly distributethe resonance eigenpak;, andE., [H|®,) = E|®,); k =
orientations ¢, ¢) of B over the unit sphere weighted byi’, i"].
sin #dde to take into account the distribution of those crys- For numerical computational convenience, the right-har
tallites whose principal axes are oriented in the intergdl, ( side of Eq. [2.3] can be expressed as
de) with respect to §, ¢). Moreover, a lineshape function,

F(B,, B), which could.be.Gaus&an qr Lorentzian, centered at (D, |BLS, + B,,S, + B,,S,| D)2
the resonant magnetic field val&(i, 6;, ¢;, v.) for the

transitioni’ < i” at B(, ¢) at the microwave resonance =BI| > a,Re TES,(|®;) ® (D))}|?
frequencyy, is required. (HereafteB, stands foB,(i, 6;, ¢;, a=xy,z
v.).) More complicated lineshape functions are occasionally )
appropriate as per the sample. In addition, each transition line + 1 2 a,Im THS,(|Pir) @ (P}, [2.4]
position must be weighted in proportion to its transition prob- e
ability.

The simulated spectrum is given by where Tr stands for the trace of a matrix, Re and Im represe

the real and imaginary parts, respectively,represents the
outer product of matrices or vectors, aad = sin 6 cos ¢,

_ w2 [ 2m . a, = sin 6 sin ¢, anda, = cos 6. Further, the various traces
S(B, v = E PG, 0, ¢, v in Eq. [2.3] are expressed in a convenient form as
0=0 ¥ ¢=0 !
X F(By, B)d(cos6)de, [2.1] Re T{S(|P:) ® (®/])]

== P R (I)in (I)ir H i
whereP(i, 0, ¢, v.) is the transition probability for théth §]: (81 2{Rel|®r) @ (i),

transition, between the resonance eigenpair levebndi”, at
v, for B(0, ¢). + Re(| ) @ (Di])j 41} [2.5a]
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Im Tr[S(|®;) ® (P;])] H.., in either decreasing or increasiMyorder.H is diagonal
in this representation, since the diagonal elements are |t
= 2 (S0, jeafIM(| D) @ (Dir])jea, eigenvalues of,.. The transformed SH matrid™ = V(H
! + Hz:5) VT, so obtained in the basis of the eigenvectord gf
+ Im(| D) ® (D)) 41} [2.5b] is then diagonalized to find its eigenvalues and eigenvecto
this time without ordering the eigenvalues, using an appropl
Re T{S,(|®:) ® (P;])] ate subroutine. This ensures that the resonance eigeMpair
M — 1 retains the same label during the homotopy procedul
=-2 IM(S); j+{IM(|Pir) @ (Pi|)ja, Otherwise, it is frequently impossible to follow the same
j eigenpair for a given transition as tBeorientation is changed,
= Im(|®i) @ (Pi]); 41} [2.5¢] particularly when this orientation is more thari6 radians
away from the crystal principal axis. Alternatively, since the
Im TI[S,(|®1) ® (P, ])] M, M — 1 eigenpair is unequivocally identified when the
perturbation expressions are used, &hgd is chosen as the
=2 IM(S); j+1{RE(| i) @ (D), zero-order term 5-7), one can make a correspondence be
J tween the eigenvalues of the full Hamiltoniad £ + H ) as
— Re(|®) @ (Dy]); i1} [2.5d] obtained by matrix diagonalization and those calculated |

perturbation, in which case the labdlis well defined. This is
In writing [2.5a]-[2.5d] the facts: (i) the matrices f6¢ and dpne by finding the closest pgrtu_rbation_eig_envalues to tl
S, are real and imaginary, respectively, and (i) the om@genyalugs ca!culated by matrix diagonalization, the two se
nonzero elements of these matrices are Rg(,, = Not being identically the same.
ReS)j+1; and Im@S)); ;-1 = —Im(S));..; have been taken Lineshape function F(B B,). The spectrum is then calcu-
into account. Further simplification can be made by noting tieted by performing the sum in Eq. [2.2] wit(i, 6, ¢;, v.)
following: Re(®;) ® (®;|)x = Rd®d;); Red.) + centered aB (i, 0;, ¢;, v.) with the lineshape functioR (B,

Im|®D;.),Im[®;),, IMm( D) ® (D)), = —ReP.)Im|dD,), + By, extended over a magnetic-field intervalAB, related to
Im|®,.);,Re®,.),, where|d,); stands for théth element of the AB,,, (full width at half maximum) characteristic of the line-
column vector|®:), etc. shape. (For exampl&B = =10AB,,, for good precision for

Lorentzian lineshape.) The two most common lineshapes a

Re T{S,(|®) ® (P;])]
= Z (S); {RD;) R D) + Im[Dy.),Im| D)}
] [2.5€] Fo(Bsi, B = Keexd —(By — By) ¥0?], [2.6a]

(i) the Gaussian lineshape,

Im Tr{(S) (|Pi) @ (Pi[)]
hereB, is the resonant field value for théh transition,o
= i {—Red;)Im|D;); + Im|D;)ReD;)}. w i ’
JZ (S);. =Ry Im| ;) + 1m| @) R, )} is the linewidth, andK { =(1/B,)(In 2/m)"? is the nor-
[2.5f] malization constant for the lineshap@, (0. Here, B, =
(3) By, is the half width at half maximum (HWHM); and

As for sums, they are over= —S —(S—1), —(S—2), (ii) the Lorentzian lineshape,

..., (5-2), (5-1) in [2.5a]-[2.5d], while they are over

j=-S —(5-1), ..., 1), Sin [2.5€] and [2.5f]. F.(B,, B) = K.T[T2+ (B, — B,)?] %, [2.6b]
Resonance eigenpairsThe same resonance eigenpair,

consisting of energy levels characterized by the electronic ) ) ) )

magnetic quantum numbeké andM — 1, which describe the Where I' is the Lorentzian linewidth (HWHM =

1/2 ; ) At
eigenvectors ofl,., the Zeeman part of the SH, should be usel®)  ABw/2, whereAB,, is the peak-to-peak first-derivative

to calculate the resonance fields corresponding to the aIIOV\Jia(HEV"idth (9))'_ ) ) )
fine-structure transitions as the orientatiofy () of B is More complicated lineshapes appropriate to polycrystallir

changed incrementally tod(+ 86, @ + 8¢) until the unit samples are discussed by Misral) and in the references

sphere is covered. This is accomplished by first diagonaliziffgErein-

the matrix for H,, with the eigenvalues arranged in either Calculation of line positions using homotopyin the ho-
decreasing or increasing order of their valubsdrder), then motopy proceduref), the resonance line position at the ori-
transforming the matrix o s, the zero-field splitting part of entation ¢ + 86, ¢ + 8¢) is calculated from the knowledge of
the spin-Hamiltonian by the matri¥, formed by the eigen- the line position at the orientatiord,( ¢), using the least-
vectors ofH,, as columns, corresponding to the eigenvalues sfjuares fitting technique and Taylor series expansi@h (
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B(i, 0 +d6, o + Ap) From Eq. [2.18], one has the following for the two line-
shapes using Egs. [2.9a] and [2.9b].

=i ive limi S\ (oS Gaussian lineshape
= jterative limi B2 9B , [2.7] pe.
B’ B
Fe(Bi v = 2 N|(@;[By,S, + By S+ B.,S|P;)|?
where i

X exf —(By — By) % o?]
X (B, — By)/o?, [2.114]

h_ is _Planck’s constant arIE_i,, E. a_re the energies ef the Ievele Lorentzian lineshape.
(i', ") of the resonance eigenpair, and the iteration starts with
B, = B(i, 6, ¢). For calculation purposes, the square bracket
in Eq. [2.13] is 1)

S = (|E — B — hwy?, [2.78]

Fc(Bk! Vc) = E N|<(Di’|leSx + B:Lysy + Blez|(I)i”>|2

928"\ "1/ 93 X (B — By)I'[T'? + (B, — By)?] 2
‘(w) <aB) = (& — &l —hv) [2.11b]
_ JoE, oE; .
X sign(E;. — Ei")/<al3 - aB) [2.8] InEgs.[2.11a] and [2.11b], the constaNt, may be appropri-
ately chosen, e.g|F (B, V¢)|max = 1, Where|F (B, v¢)|max iS
the largest magnitude of all the calculated values.
The required eigenvalues and eigenvectors of the spin-Ham-
iltonian matrix are computed by the use of the subroutine 111. ESTIMATION OF SH PARAMETERS AND
JACOBI, which diagonalizes real symmetric matrices and i€ INEWIDTH FROM A POLYCRYSTALLINE SPECTRUM
particularly efficient when the off-diagonal elements inthe SH  AND CALCULATION OF FIRST AND SECOND
matrix are infinitesimally small, as is naturally the case in DERIVATIVES OF THE x*-FUNCTION

homotopy 6, 13. o _
Calculation of first-derivative EPR spectrumMost exper- 70" application of the LSF technique proposed here, tt
imental EPR data are obtained as the first derivative of tiefunctionis defined as the sum of the weighted squares of t

absorbed microwave power as functions of the external m{g‘jﬁerences between the calculated and measured first-deri

netic field intensity. This is true WheB, = (1/2)By, tl\(e.absorption resonances at the megnetic field vaBiges
whereB,, is the amplitude of the modulation magnetic fieldVithin the magnetic-field interval considered,

The simulated first-derivative spectrum is calculated by taking

the derivative ofS(B, v.) (see Eq. [2.2]) with respect tB, x?= 2 [FdBy, v — Fu(By, v)1% 0, [3.1]
along with that of the lineshape. Specifically, for the Gaussian k

and Lorentzian lineshapes, given by Egs. [2.6a] and [2.6b], one

has, respectively, for the first derivative, where F (B, v;) andF(B, v.) are, respectively, the nor-
malized calculated (Eq. [2.11a] or [2.11b]) and measured ve
9F (B, B)/9B, = —2K(B, — B,) ues of the first-derivative EPR resonance signal, @pi the

weight factor (related to standard deviation of the dak)m
X exp(—(By — By)*/o?)/0?, [2.9a] The measured/calculated values may be normalized in sucl
way that the maximum of each is equal to 1.
dFL(Bg, BY/dB, = —2K.I'[T'? + (B, — B;)?] 2 In the LSF technique, the vectaf', whose components are
the values of the SH parameters and the linewidth correspor
X (B = By). [2.9b] ing to the absolute minimum of thg’-function, can be ob-
) ) o ) _ tained froma', the vector whose components are the initially
The simulated first-derivative absorption spectrum is €Xnosen values of the SH parameters (see Appendix 1) and

pressed from Eq [22] as linewidth (1)
Fd(By vo) = dS(By, vo)/dBy a"=a — (D"(a)) D’. [3.2]
=C > PG, 6, ¢) , .
6,0 In Eq. [3.3],D’ is the column vector whose elements are the fir

derivatives of thex’function with respect to the parameters
evaluated aa' andD"” is the matrix whose elements are the secor
[2.10] derivatives with respect to the parameters evaluated:at

X aF(wia Br(i1 6]’, (I Vc), Bk)/aBkSin GJ-.
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6 2

D, = (a);) [3.34]
aZXZ

DY, = (aa 2 ) . [3.3b]

Sincea™ is not known initially, the elements of the matifiX
are, in practice, evaluated with respectao referred to as
D"(a). A new set of parameters, denoted by the veeior
which replaces the vectoa™, given by Eq. [3.2], is then
calculated,

a'=a — (D"(a")) 'D". [3.4]

a' is calculated iteratively until a sufficiently small value of the
x’-function, consistent with experimental errors, is obtained.
The errors in the values of the parameters can be calculated
statistically from the matrix elements B’ (see Appendix II).
Calculation of D and D'

Equations [3.3a] and [3.3b] yield
IF(By, v °)>/UE

m

D;n =2 E [FC(Bk! Vc) - Fm(Bka c)](
k
[3.5a]

D,r;m: 2 E {[Fc(Bkv Vc) - Fm(Bka Vc)](
k

N (aFC(Bk1 yc))<aFc(Bk1 VC))}/O,Z [35b]

da, dan, ke

da,0an,

The first and second derivatives Bf(B,, v.), given by Egs.
[2.11a] and [2.11b], with respect to the parameters appearing in
Egs. [3.5a] and [3.5b], are as follows.

a. Gaussian lineshape.

d FC( Bkl VC)
FER

+ B1,S,|®i)| “exd —(By — Bri)zlo'z]z
X (B~ Br.>{ 4 (B- By /cr}/a
[3.64a]

In Eq. [3.6a],00/0a,, = 1llwg, for a,, = wgo, =0 otherwise.
From Eg. [3.6a] the second derivative Bf(B, v.) is

82F(:(Bk! VC)

saaa. — 2 NK®[BuS + ByS, + By,S|P)|?

92F (B, uc)) 9F(By vo _
m

= > N(®,|B,S, + ByS, where

2

9B,
X {[Z(Bk Bn)/a-z]{

danda,

aBr, oo
~9a, 0a, ¢

Jdo do
- (Bk_ Bn) /0-2}

da, dan,
5 JaB; B 80’/
B da, ~ Bu) FEN
—[2(By— Bri)/o']2

0B, B 80’/
*| 9a, ~ Bu) ga,

0B,
20y, 2
X [aam Br,) aam ]/0‘ } ,

3.6D]

where account has been taken of the fact that the secc
derivative ofa with respect to the parametess,, is zero.

b. Lorentzian lineshape.

E N|<q)i’|leSx + BlySy + Blez|q)i”>|2

1 oI’
X [FZ + (Bk_ Bri)2]2 {aam (Bk_ Bri)

Bl r@e - B
aam + (k_ ri)

d
X {aam (L[T?+ (B, — Bri)z]z)} , [3.74]

J 2 212
{aam(ll[F + (B = B:)”] )}

4F8F B
— ?%_(k_

ri

9B,
FER

S P74 (B — Bri)z]s) . [3.7b]

In Egs. [3.7a] and [3.7bRI'/0a,, = 1/w,, fora, = w.I', =0

X exg — (B, — B)¥c?] otherwise.
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From Eq. [3.74], and
B, ’E = Ak
9*Fo(By, vo) daa, | \dada, oadan 9B,
e = 2 NK®[BLS, + By,S, + B,S| Py 7S " i
Hanaam i 2E 2
. ' (aanaBr. aanaBr.) (aBr. aBr.> |
+ (Bk - Bri) ] ) [38b]
ol B, . - .
SEre (B.—B,) —T 3 In Eq. [3.8b], the required second derivatives of the eigenve
am am ues are given in1),
— (L/T2 + (B, — By)?]?
oH aH
% ﬂaBri ar aBri azBri 9a.9 E < ’3 (Dk><q)k (97 (I)|>/
da, da, = da, da, da,da, an am 8m an
al’ dB; E; — E,) + complex conjugate, 3.9
N (B.—B) T } (B - E p jug (3.9]
da, Ja,
5 where, as well as in [3.10], the prime over the summation sig
X{— (1/[T2+ (B, — Bn)z])} indicates that the sum excludes the term Witk i, that is the
dan summation is over all the eigenvalues (and eigenvectors) of t
+T'(B.— B,) SH matrix, except fok = i. For numerical computational

convenience, Eq. [3.9] is rewritten as

92 2 2
X {aaﬁaﬂ(l/[r + (Bx— By) ])} ,

[3.7¢] 3ada E T o (I@k><<1>k|) (|cI>,><<1>|)

+ (E; — E,) + complex conjugate.  [3.10]
where, from Eq. [3.7D],
IV. OPTIMUM SH PARAMETERS AND LINEWIDTH
ESTIMATION FROM A POLYCRYSTALLINE SPECTRUM

02 /T2 ) USING THE LSF TECHNIQUE
78 ga. (VT + (B~ B))?)

The approach recommended for the evaluation of the S
[ ar o' aB, 9B, 92B, } parameters and linewidth using the LSF method in conjunctic

92 9a. + ba, 9a, (Bx — By) with the HTMD method follows.

da,da,
(i) A set of initial values of SH parameters and linewidth
_ 12[1“ £ — (B, — B,) aBn] which may be obtained by an adjustment of parameters o\
" dan appropriate ranges by simulation of a polycrystalline spectru
either by using perturbation expressions or by matrix diag
2 272112 2 nalization, is chosen.
[F (B B4 (B = B) . (i) The spectrum is simulated using these values and tl
[3.7d] HTMD method 6). The corresponding?-value is calculated
using Eq. [3.1].
(i) The first and second derivatives of thg-value are
In expressing Eq. [3.7d], account has been taken of the fact tBafculated with respect to the parameters using Egs. [3.3] a
the second derivative df with respect to the parameteis,, [3.4].

X9,

is zero. (iv) New values of the SH parameters are then calculats
Itis shown in Appendix Ill that the derivatives 8f; in Eqs. with the LSF procedure using Eg. [3.5] and the derivative
[3.6a], [3.6b], and [3.7a] are given by obtained in step (iii).

(v) The x*value is now recalculated. Convergence i

achieved if this value is less than or equal to a predetermin

9By _ (aE aEi”>/<6Ei’ _ aEi”) [3.8a] value, °).. consistent with experimental uncertainties, an
dan da, dan B 9B further iterations are not required. The SH parameter ai
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linewidth values obtained in step (iv) are then the final values. VI. ILLUSTRATIVE EXAMPLE

The corresponding errors of the values of the SH parameters

and linewidth are calculated statistically from the first and The LSF/HTMD technique will now be illustrated to esti-

second derivatives of thg’-value using the expressions giverimate the SH parameters and linewidth from the 249.9-Gk

in Appendix I. EPR spectrum for the Mnfpicoline),l, polycrystalline sam-
(vi) If the y*value calculated in step (v) is larger tharPle. This spectrum is characterized by a rather large value

(x})mn, then steps (i)—(v) are repeated using the SH paramelfe¢ zero-field splitting parameteR. This spectrum was re-

and linewidth values obtained in step (v). This procedure ported by Lynctet al.(7) when the magnetic field was over the

repeated untih® = (x*)min- interval 4.4-9.4 T. It exhibited only fine structure, without an
(vii) If convergence is not achieved in step (vi) or thdyperfine structure. They analyzed this spectrum using t

x*-value in any iteration is greater than that obtained in th#ngle-crystal SH in spherical coordinates € r cos 6, X =

previous iteration, then either the initial values of the SK Sin 6 cose, y = r sin 6 sin ¢):

parameters and linewidth used in step (i) are changed or the

binary-chop technique described in Appendix IV is then used. H = guzB(S,cos6 + Ssin 6 cose + S,sin 6 sin )

+ D[S — S(S+ 1)/3] + E(S; - S)), [6.1]

V. EXTENSION TO THE CASE OF TWO

MAGNETICALLY INEQUIVALENT SPECIES . .
where ug is the Bohr magnetor) and E are the zero-field

. . - litting parameters, and the,(y, z) axes define the coordi-
The resulting spectrum is a superposition of the spect?%te system used, with theaxis being coincident with the

corresponding to the two species with the weight factors prg— X .
portional to the populations of the two species in the samp‘f{asgmdm.et% a)g; 'Lhe fourth;}or_derﬁZFS_ termsl_ v_\gnire n02t 4';
when two magnetically inequivalent species are present inci ed in the » because their efiect is negligible at
polycrystalline sample. Consequently, there are a total

(n, + n, + 1) parameters to be fitted, whargandn, are the
number of parameters characterizing the two species, si
each species is characterized by its own set of parameters,
the additional parameter gives the fractioh) (of one of the

species. The resultant spectrum is expressed as

The values of parameters were estimated by Lyetcl. (7)
r%%m the observed spectrum, using third-order perturbatic
ﬁ%ressions for the energy’,(8 and the same zero-order
relative intensity (M, m|S, + S_|M’, m)|?) (7) of theAM =
+1 “allowed” fine-structure transitions, independent of thi
orientation of the external magnetic field with respect to th
axis of the various crystallites constituting the polycrystallin
Foay, ag, f) = fFa(ay) + (1 — f)Felay), [5.1] spectrum. Guided by these, the following initial values of th
parameters were usegl= 2.000,D/gus = 1.07 T,E/gus =
. . 10 mT, AB,, = 70 mT. AB,, is related to the Lorentzian
wherei =1, 2,...,n;, andj = 1, 2, ...,n.. linewidth (Eq. [2.6b]):AB,, = 2[/(3)** (9)). These initial
The experimental spectrum can be fitted to the parametq/ra,ues’ used in the LSF technique in conjunction with th
using the derivatives df ; with respect to the parameteas, HTMD method, lead to the values of the SH parameters al

3y, 1. It follows from Eq. [5.1] that the linewidth:g = 2.00218+ 0.00001,D/gus = 1.092 +
0.001 T,E/gps = —1.27 + 0.15 mT,AB,, = 67.92+ 0.05

dFJaay = foF4/oay; [5.2a] MT. Figure 1 shows the experimental spectrum, along with tt
spectrum simulated using these values.
dFJday, = (1 — f)aFJoay; [5.2b] In addition, successful application has been made of tl

LSF/HTMD method as proposed here to evaluate the Mn
parameters from 249.9- and 95-GHz data on tetrahedra
distorted compounds: dichloro-, dibromo-, diiodo-bis(tri:
The derivatives given by Egs. [5.2a] or [5.2b] can be calculat@iienylphosphine) dioxide manganese complexes [14].

in the same way as for the case of one species, except for the

(_:)Fc/af = FCl - FCZ' [5.20]

introduction of the weighting factors éfand (1— f), respec- VII. COMPUTATIONAL TIME REQUIRED
tively, for species 1 and 2. Using Eqgs. [5.2a]-[5.2c] for the IN THE EVALUATION OF PARAMETERS
required derivatives, the values of the parametgrsa,;, and BY THE HTMD/LSF PROCEDURE

the fractionf can be evaluated by the LSF technique in con-

junction with the HTMD method, using the approach outlined A detailed discussion of computational times required in tt

in Section IV for only one species. simulation of a MA" polycrystalline spectrum by the HTMD/LSF
The procedure for two species outlined here can be similapyocedure has been provided in Ré). (t was 4 h 9 minl.77 s

extended to the case of the presence of more than two mag-the IBM RS/6000 Unix computer at the Cornell University

netically inequivalent species. Theory Center (CUTC) for one simulation using a grid of 300
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5 & T 8 9 calculated rigorously using numerical techniques based |
10 249.9-G|Hz Mn(ly-picolill1e) | ' ' .0 the eigenvalues and eigenvectors of the SH matrix, f
42 which the required expressions have here been listed expl

| Experimental \

itly for the Gaussian and Lorentzian lineshapes. The meth
08| - - - Calculated has the advantage that it can be extended to include t
presence of an arbitrary number of magnetically inequiv:
oo  lent species. In addition, it is relatively fast due to using th
homotopy technique. (For an appreciation of compute
times required, see Section VIII ané)()
05 One example has been included here to illustrate the pi
posed procedure, and three examples will appear in a sepa
1ok t |.,, Publication (4). Additional illustrative examples are not nec-
— " essary, since as discussed 6), (the ability to calculate the
- EPR resonance angular variatidk) {s sufficient to ensure the
Magnetic Field (T) . . K . . .
simulation of a polycrystalline spectrum, which is the weighte
FIG. 1. EPR spectrum (249.9 GHz) for Mh in polycrystalline Mng- superposition of single-crystal spect).(
picoline)l, simulated by the HTMD technique using the SH parameter and Although the procedure has been described for the “fiel

linewidth values as obtained by the LSF technique: 2.00218 D/gus = 1.092 ' EPR t it i I licable to “f
T, Blgus = —1.27 mT,W = 67.92 mT, and the observed experimental spectrurﬁwep spectrum, 11 1s equally applicable to “frequency

measured in the-field interval 4.4—9.4 T. (The magnetic field could not excee@Wept” S_peCtrU”_L since the resonance condition, giV?n by E
9.4 T experimentally.) It is noted that the experimental peaks not correspondingltb1], still remains the same. As well, by modulating the

those in the simulated spectrum belong to an unidentified imputy ( external magnetic field, which remains constant, one record:
the first derivative of the lineshape as discussed here for t
field-swept case.
values, 90¢ values perf value. On the other hand, the time The procedure outlined in this paper can be easily extended
required for a simulation using third-order perturbation expresvaluate the parameters describing electron-nuclear double re
sions was only 7 s! Since, in the LSF evaluation of parametergince (ENDOR), solid-state nuclear magnetic resonance (NM|
one needs the first and second derivatives of the simulated spgelear quadrupole resonance (NQR), and electron spin-ec
trum with respect to the parameters, calculated using the safBSE) envelope modulation spectra from polycrystalline sample
eigenvalues/eigenvectors as those required in the simulation, d8awell as to include hyperfine structufis(16.
computational time required for one iteration in the evaluation of |t is hoped that the procedure outlined in this paper will b
parameters will be only somewhat longer than that required fgseful for where single-crystal samples are not available, e.
simulation. Accordingly, it turned out to be, on the averdgh O metalloproteins ), or when it is experimentally difficult to
min 53 s per iteration on the same CUTC computer for a gridtate single crystals and/or record more than one EPR sp
consisting of 1500 values (N.B., one-half of those used fortrum at liquid-helium temperatures, or below a phase-transitic
simulation), 90¢ values ped value, including a new simulation temperature when the magnetic-axes orientations are |
of the spectrum with the final values of the parameters. Of courk@own. Further, it is noted that the availability of high-spee
if more than one iteration is required to calculate the final set personal computers means that the simulation of a polycry
parameters, the overall computational time will increase corigdline EPR spectrum does not require access to large com
spondingly. Finally, it is noted that computational time is neational facilities.
longer a barrier nowadays due to readily available inexpensive
fast PC computers. Further, the number of iterations required is
reduced if the initially chosen values of the parameters are close
to those corresponding to the absolute minimum ofythealue.
Choice of initial values is explained, in particular, in Appendix I.
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APPENDIX 1|

Choice of Initial Values Required in the LSF Procedure

For achieving convergence in the LSF procedure, it |
VIIl. DISCUSSION AND CONCLUDING REMARKS necessary that the initial values chosen are reasonably cl
to those corresponding to the absolute minimum of th
The method for evaluating the SH parameters and thé-value, represented by the components of the veatdn
linewidth from a CW EPR polycrystalline spectrum usingection Ill. The procedure will not converge if they are fa
the LSF procedure, in conjunction with the HTMD methodemoved froma™. To this end, it is helpful to study the
which has been described here, is rigorous because it is fedtures of the experimental spectrum, i.e., the peaks, anc
based on any approximations. The relative intensities hasienulate the EPR spectrum with trial values using pertu
also been calculated using the exact eigenvectors, corbation expressions, for which one needs negligible comp
sponding to the energy levels of the resonance eigenpataional time as discussed in Section VII. One can estima
The first and second derivatives of thg-function are the values of the large ZFS paramet&sand E from the
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TABLE 1 Aa; = (ij)ll2, [1.1]
Positions of Peaks for Polycrystalline Mn** (g = 2) Spectrum for
n (=D/E) = 0 (Axial Symmetry) and n = 1/3 (Maximum Ortho-

thombic Distortion) (7) wheree; are the diagonal elements of the mateix

Position of peak Transition or turning point — (i -1

€= (3D . 1.2
(Bo = hvigpus, (2 ) [ ]
D, = D/gus) (m=0) (n = 1/3)

It is noted that the nondiagonal elements, (j # k),

Bo = 4D, 52 <312 @) 5/2 <312 @) represent the correlations among the errors of the vario
—3/2 < —5/2 ()
B, — 2D, 312 & 1/2 (2) 312 > 1/2 @) parameters1(7).
—3/2 < —5/2 (x, ) —1/2 & —3/2 ()
B, — Do —1/2 < =312 (x, ) APPENDIX 111
B, 1/2 & =1/2 (X, Y, 2) 5/2 < 3/2 (x)
(for splitting due to 3/2 < 1/2 (x)

hi Calculation of Derivative of B,; with Respect
igher order terms, 1/2 & -1/2 (X, Y, 2) . .
see Note) 12 o —312 () to the Parameters and Linewidth

—8/2 < =512 () If one starts with the resonance condition for the transitio

B, + Do 3/2 < 1/2 (X, y) ., . ; )
B, + 2D, —1/2 & —3/2 ) —1/2 & —3/2(2) i’ < i” which occurs at the field,
5/2 < 312 (X, y) 3/2 < 1/2 (y)
B, + 4D —3/2 < —5/2 —3/2 < —5/2
' ' - “ 5/2 < 312 ) © hv =& —E- (.11

Note.The lettersx, y, andz represent the orientation of the external ZeemaiThen, taking the derivative of Eq. [II.1] with respect to the
field with respect to the ZFS tensor axis. It is noted that higher order termarameten,, and taking explicit account of the dependence ¢

break the symmetry of the spectrum and cause a large splitting in the>-1/2 _ _ . ‘. _
—1/2 transition into three turning points® @z) and 90 (x, y) transitions, E/, E- ona, andB,, and of implicit dependence & onay,

along with a line at 41.8° fom = 0. The rhombic distortiony, splits some ylelds
lines. The positions of the 0° artransitions are insensitive tg. But the=D

lines for axial symmetry, being in-plane transitions, are very sensitive to

or axial . ! 9B, 0E, OEy\ /[(0E. OE.
rhombic distortion. These lines move asncreases and are completely lost at = | —— — . [11.2]
full rhombic distortion. TheB, region at full rhombic distortion maybe dan da, dan B 9B

characterized by a single line or a complex pattern of many lines depending on

the value ofD and linewidth. The positions of the peaks for the intermediatéi,--he derivative of E : :
. : g. [I1.2] with respect @, yields Eqg. [3.8b].
lues 0 1/3 can be obtained by extrapolation. . L2 .
values B=m = 1S can be obtained by extrapoiation Using Feynman'’s theoreni), the derivatives of the eigen-
values with respect to the parametarsandB,; are

positions of the peaks. Basically, as discussed in R@fin

context with the MA" ion, the rhombic distortion+«f = 9IE; :< . ’ oH

D/E) and the value oD can be estimated from the peak dan "I oan

positions. The positions of the peaks expected for the two

extreme cases are given in Tablenl= 0 (axial symmetry) and

andn = 1/3 (maximum rhombic distortion). As for inter-

mediate cases, one can make an educated guess by extrap- 9E.. aH

olation between these two cases. L= < i ’ ’d)i,>
aB, B o

cpi,> [11.3]

[11.4]

By

APPENDIX Il In Eq. [11.3], 9H/0a,, is the spin operator whose coefficient
is a, in the SH given in Eq. [6.1]:
Expressions for Statistical Errors of Parameters

: . , oH
As discussed in1(7), the errorsAa; in the parameters, as —_ — |, B(S,cos6 + S,sin 6 cose + S,sin 6 sin @),

evaluated by the LSF method, can be calculated statistically?9

from the matrixD” formed by the matrix elements which are [11.5]
the second derivatives of thg-function with respect to the gH

parameters as given by Eq. [3.3b]. It is important to take into ;3 = [SZ = S(S+ 1)/3], [11.6]
account appropriately the weight factows, for the data points

appearing in the expression for thg-function, Eq. [3.1], ﬁ_ @?_ g L7
which depend upon the experimental uncertainties. Finally, oE (S V) .71
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while
dH _ _ _
B gue(Cos S, + sin 6 cos S, + sin 6 sin ¢S)),
[11.8]
where 0, ¢) is the orientation oB with respect to the-axis.

APPENDIX IV

Binary-chop Technique to Achieve Convergence

iteration, to be used in EqQ. [3.2], are far from the absolute

minimum of the y*-value, the resulting value of parametersa.

may yield ay*value which is greater than that obtained in the
previous iteration being corrected to a local minimum. One

may then invoke the binary-chop techniqug, (in which the 5.
LSF correction ina' to calculatea’ is reduced by a factor of 2 6.
in Eq. [3.4], i.e., it is now—(D"(a)) 'D'/2. If the resulting 7.

x’>-value is still greater than that obtained in the previous

iteration, this difference is again chopped by 2, and so on, unt
the resultingy®-value is less than that in the previous iteration.9:

Finally, it is noted that the binary-chop technique may not

always work if the initial values chosen are far apart from those )
10. H. A. Buckmaster and J. C. Dering, J. Appl. Phys. 39, 4486 (1968).

corresponding to the absolute minimum of tifefunction. In
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