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Details are given of a procedure to evaluate the spin-Hamilto-
nian (SH) parameters and the linewidth from a polycrystalline
EPR spectrum by using a least-squares fitting (LSF) technique in
conjunction with numerical diagonalization of the SH matrix. The
required resonance line positions are computed rather quickly
using a homotopy technique, in which the position at an external
magnetic field (B) orientation (u, w) is used as the initial value in
a LSF procedure to estimate the position at an infinitesimally close
B-orientation, (u 1 du, w 1 dw). The resonance line positions are
calculated successively in this procedure for all orientations of B
over a grid of (u, w) values for the unit sphere. The eigenvectors of
the SH matrix are used to calculate the intensities of the EPR lines
exactly for each orientation of B. Details are given of how to
compute rigorously the first and second derivatives of the x2-
function with respect to the SH parameters and the linewidth
using the eigenvalues and eigenvectors of the spin-Hamiltonian
matrix for a polycrystalline spectrum required in the LSF proce-
dure. It is explained how this technique is generalized to include
two or more magnetically inequivalent paramagnetic species, as
well as how it is used for the simulation of other EPR-related
spectra. The procedure is illustrated by evaluation of the Mn21 SH
parameters and Lorentzian linewidth from the 249.9-GHz EPR
spectrum of Mn(g-picoline)4I2. © 1999 Academic Press

I. INTRODUCTION

It is of considerable interest to be able to accurately evaluate
the spin-Hamiltonian (SH) parameters characterizing paramag-
netic species from polycrystalline EPR spectra. The polycrys-
talline spectrum is the superposition of the monocrystalline
spectra expected for uniform distribution ofB(u, w) with
respect to the symmetry axis of the single crystal where one
exists. For polycrystalline samples, it is possible to achieve a
precision similar to that for single crystals by following the
procedure described in this paper, using the least-squares
(LSF) technique. In this procedure, a large number of reso-
nance line positions, obtained for a uniform distribution of
orientations of the external magnetic field (B) with respect to
the single-crystal symmetry axis, are fitted simultaneously to
improve significantly the precision in the estimated values of
the SH parameters. The procedure has been made rigorous by
using the eigenvalues and eigenvectors of the SH matrix to

calculate the required first and second derivatives of thex2-
function as described in (1).

For many molecules, such as metalloproteins (2), it is not
possible to grow single crystals of sufficient size to enable
them to be mounted with their axes oriented in chosen direc-
tions for angular variation of EPR spectrum for varying orien-
tations ofB with respect to the crystal symmetry axis in order
to evaluate SH parameters accurately. Moreover, it is not
always possible to rotate either the crystal or the magnetic
field, for experimental reasons or because the orientations of
the axes change when structural phase-transitions occur, and it
is not possible to reorient the crystal inside the cryostat at low
temperatures. It is then preferable to record a polycrystalline
(powder) spectrum. The possibility of fitting a large number of
EPR resonance line positions simultaneously is then excluded,
since only one spectrum, insensitive to the orientation of the
external magnetic field, is available for a polycrystalline
sample.

So far, SH parameters have been estimated for the case of
larger spins by the use of brute-force techniques, wherein a
polycrystalline spectrum is simulated by arbitrarily adjusting
the parameter values. The set of values that provides the most
reasonable fit is then considered to be the set representing the
best values of the SH parameters. Also, the intensities were
calculated using the zero-order wavefunctions, insensitive to
the orientation ofB, and perturbation expressions were used
for the eigenvalues which may not be quite precise when the
orientation ofB and of the symmetry axis of the single crystal
deviate significantly from each other and the zero-field splitting
(ZFS) parameter,D, is relatively large. Markham and Reed
(3), Zhang and Buckmaster (4), and Coffino and Peisach (5)
have discussed the computational strategies involved in the
simulation of polycrystalline spectra, especially using the ma-
trix diagonalization (4, 5). Recently, the homotopy technique,
together with the diagonalization of the SH matrix (referred to
hereafter as the HTMD method), has been proposed for a fast
simulation of an EPR polycrystalline spectrum (6).

It is desirable that the parameter values are estimated by the
use of a mathematical criterion, in which all the SH parameters
and linewidth values are varied simultaneously in a systematic
manner, using a LSF technique. This paper provides the details
of a LSF procedure which can be used to estimate SH param-
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eter values from a polycrystalline spectrum to estimate the first
and second derivatives of thex2-function with respect to the
SH parameters and the linewidth by an exploitation of the
HTMD method. Section II describes briefly the details of how
to simulate a polycrystalline spectrum by the HTMD tech-
nique, while Section III deals with the estimation of the pa-
rameters from a polycrystalline spectrum using the LSF tech-
nique, including the details of how to calculate the first and
second derivatives of thex2-function with respect to the pa-
rameters. Since analytic expressions are not available for the
eigenvalues and spectral intensities, this is accomplished by
numerical techniques employing the eigenvalues and eigenvec-
tors of the SH matrix. Specific details are provided here for the
Gaussian and Lorentzian resonance lineshapes. The recom-
mended procedure for the application of the LSF technique to
estimate SH parameter and linewidth values is outlined in
Section IV. Extension to the case of two magnetically in-
equivalent paramagnetic species is discussed in Section V. An
illustrative example, involving the evaluation of Mn21 param-
eter values from a 249.9-GHz EPR spectrum of polycrystalline
Mn(g-picoline)4I 2, is given in Section VI. Discussion and
concluding remarks are given in Section VIII.

II. SIMULATION OF POLYCRYSTALLINE SPECTRUM
BY THE USE OF HOMOTOPY

This section provides an overview of how to simulate an
EPR polycrystalline spectrum using the HTMD technique.
(Misra (6) has given complete details about this new tech-
nique.) This spectrum is the summation of single-crystal spec-
tra computed for a large number of uniformly distributed
orientations (u, w) of B over the unit sphere weighted by
sin ududw to take into account the distribution of those crys-
tallites whose principal axes are oriented in the interval (du,
dw) with respect to (u, w). Moreover, a lineshape function,
F(Bri , B), which could be Gaussian or Lorentzian, centered at
the resonant magnetic field valueBr(i , u j , w j , n c) for the
transition i 9 7 i 0 at B(u, w) at the microwave resonance
frequencync is required. (Hereafter,Bri stands forBr(i , u j , w j ,
n c).) More complicated lineshape functions are occasionally
appropriate as per the sample. In addition, each transition line
position must be weighted in proportion to its transition prob-
ability.

The simulated spectrum is given by

S~B, nc! 5 E
u50

p/ 2 E
w50

2p O
i

P~i , u, w, nc!

3 F~Bri, B!d~cosu !dw, [2.1]

whereP(i , u, w, n c) is the transition probability for thei th
transition, between the resonance eigenpair levels,i 9 andi 0, at
nc for B(u, w).

The integral in Eq. [2.1] describing a polycrystalline spec-
trum can be divided up into discrete sums:

S~Bk, nc! 5 C O
i ,u j,w j

P~i , u j, w j, nc! F~Bri, Bk!sin u j. @2.2#

In Eq. [2.2], the values ofu j are in the interval 0 top/2, while
those ofw j are in 0 to 2p, using a uniform grid of (u j , w j)
values, and sinu j takes into account the assumed uniform
distribution of the crystallites constituting the polycrystalline
sample. The method for determining the (u j , w j) grid is given
in (6). The summation overk takes into account the probability
of the amplitude of absorption at the magnetic field valueBk

due to the lineshape functionF(Bri , B) for the i th transition for
the B-field orientation (u j , w j). Further, it has been assumed
that all spins are characterized by the same values of spin-
Hamiltonian parameters, i.e., their magnetic tensors are the
same except for the orientations of their principal axes due to
the polycrystalline nature of the sample.

Transition probability, P(i,u, w, nc). The transition prob-
ability

P~i , u, w, nc! } u^F i 9u~B1xSx 1 B1ySy 1 B1zSz!uF i 0&u 2,

[2.3]

whereSa andB1a; (a 5 x, y, z) represent the components of
the electron spin operator,S, and the modulation magnetic field
B1. uF i 9& and uF i 0& are the eigenvectors of the spin-Hamilto-
nian matrix, H, corresponding to the energy levels of
the resonance eigenpair,Ei 9 andE9i 0, [HuF k& 5 EkuF k&; k 5
i 9, i 0].

For numerical computational convenience, the right-hand
side of Eq. [2.3] can be expressed as

u^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

5 B1
2@u O

a5x,y,z

aaRe Tr$Sa~uF i 0& # ^F i 9u!%u 2

1 u O
a5x,y,z

aaIm Tr$Sa~uF i 0& # ^F i 9u!%u 2#, [2.4]

where Tr stands for the trace of a matrix, Re and Im represent
the real and imaginary parts, respectively,V represents the
outer product of matrices or vectors, andax 5 sin u cos w,
ay 5 sin u sin w, andaz 5 cosu. Further, the various traces
in Eq. [2.3] are expressed in a convenient form as

Re Tr@Sx~uF i 0& # ^F i 9u!#

5 O
j

~Sx! j , j11$Re~uF i 0& # ^F i 9u! j11, j

1 Re~uF i 0& # ^F i 9u! j , j11% [2.5a]
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Im Tr@Sx~uF i 0& # ^F i 9u!#

5 O
j

~Sx! j , j11$Im~uF i 0& # ^F i 9u! j11, j

1 Im~uF i 0& # ^F i 9u! j , j11% [2.5b]

Re Tr@Sy~uF i 0& # ^F i 9u!#

5 2O
j

Im~Sy! j , j11$Im~uF i 0& # ^F i 9u! j11, j

2 Im~uF i 0& # ^F i 9u! j , j11% [2.5c]

Im Tr@Sy~uF i 0& # ^F i 9u!#

5 O
j

Im~Sy! j , j11$Re~uF i 0& # ^F i 9u! j11, j

2 Re~uF i 0& # ^F i 9u! j , j11% [2.5d]

In writing [2.5a]–[2.5d] the facts: (i) the matrices forSx and
Sy are real and imaginary, respectively, and (ii) the only
nonzero elements of these matrices are Re(Sx) j , j11 5
Re(Sx) j11,j and Im(Sy) j , j11 5 2Im(Sy) j11,j have been taken
into account. Further simplification can be made by noting the
following: Re(uF i 0& V ^F i 9u) jk 5 ReuF i 0& j ReuF i 9&k 1
ImuF i 0& jImuF i 9&k, Im(uF i 0& V ^F i 9u) jk 5 2ReuF i 0& jImuF i 9&k 1
ImuF i 0& jReuF i 9&k, whereuF i& j stands for thejth element of the
column vectoruF:&, etc.

Re Tr@Sz~uF i 0& # ^F i 9u!#

5 O
j

~Sz! j , j$ReuF i 0& jReuF i 9& j 1 ImuF i 0& jImuF i 9& j%

[2.5e]

Im Tr@~Sz!~uF i 0& # ^F i 9u!#

5 O
j

~Sz! j , j$2ReuF i 0& jImuF i 9& j 1 ImuF i 0& jReuF i 9&}.

[2.5f]

As for sums, they are overj 5 2S,2(S21), 2(S22),
. . . , (S22), (S21) in [2.5a]–[2.5d], while they are over
j 5 2S, 2(S21), . . . , (S21), S in [2.5e] and [2.5f].

Resonance eigenpairs.The same resonance eigenpair,
consisting of energy levels characterized by the electronic
magnetic quantum numbersM andM 2 1, which describe the
eigenvectors ofHZe, the Zeeman part of the SH, should be used
to calculate the resonance fields corresponding to the allowed
fine-structure transitions as the orientation (u, w) of B is
changed incrementally to (u 1 du, w 1 dw) until the unit
sphere is covered. This is accomplished by first diagonalizing
the matrix for HZe with the eigenvalues arranged in either
decreasing or increasing order of their values (M-order), then
transforming the matrix ofHZFS, the zero-field splitting part of
the spin-Hamiltonian by the matrixV, formed by the eigen-
vectors ofHZe as columns, corresponding to the eigenvalues of

HZe, in either decreasing or increasingM-order.HZ is diagonal
in this representation, since the diagonal elements are the
eigenvalues ofHZe. The transformed SH matrixHT 5 V(HZe

1 HZFS)V†, so obtained in the basis of the eigenvectors ofHZe,
is then diagonalized to find its eigenvalues and eigenvectors,
this time without ordering the eigenvalues, using an appropri-
ate subroutine. This ensures that the resonance eigenpairM,
M 2 1 retains the same label during the homotopy procedure.
Otherwise, it is frequently impossible to follow the same
eigenpair for a given transition as theB orientation is changed,
particularly when this orientation is more thanp/6 radians
away from the crystal principal axis. Alternatively, since the
M, M 2 1 eigenpair is unequivocally identified when the
perturbation expressions are used, andHZe is chosen as the
zero-order term (5–7), one can make a correspondence be-
tween the eigenvalues of the full Hamiltonian (HZe 1 HZFS) as
obtained by matrix diagonalization and those calculated by
perturbation, in which case the labelM is well defined. This is
done by finding the closest perturbation eigenvalues to the
eigenvalues calculated by matrix diagonalization, the two sets
not being identically the same.

Lineshape function F(Bri , Bk). The spectrum is then calcu-
lated by performing the sum in Eq. [2.2] withP(i , u j , w j , n c)
centered atBr(i , u j , w j , n c) with the lineshape functionF(Bri ,
Bk), extended over a magnetic-field interval6DB, related to
DB1/ 2 (full width at half maximum) characteristic of the line-
shape. (For example,DB 5 610DB1/ 2 for good precision for
Lorentzian lineshape.) The two most common lineshapes are

(i) the Gaussian lineshape,

FG~Bri, Bk! 5 KGexp@2~Bk 2 Bri!
2/s 2#, [2.6a]

whereB ri is the resonant field value for thei th transition,s
is the linewidth, andK G { 5(1/BD)(ln 2/p) 1/ 2} is the nor-
malization constant for the lineshape (9, 10). Here, BD 5
(1

2) B1/ 2 is the half width at half maximum (HWHM); and
(ii) the Lorentzian lineshape,

FL~Bri, Bk! 5 KLG@G 2 1 ~Bk 2 Bri!
2# 21, [2.6b]

where G is the Lorentzian linewidth (HWHM 5
(3)1/ 2DBpp/2, whereDBpp is the peak-to-peak first-derivative
linewidth (9)).

More complicated lineshapes appropriate to polycrystalline
samples are discussed by Misra (11) and in the references
therein.

Calculation of line positions using homotopy.In the ho-
motopy procedure (6), the resonance line position at the ori-
entation (u 1 du, w 1 dw) is calculated from the knowledge of
the line position at the orientation (u, w), using the least-
squares fitting technique and Taylor series expansion (12),
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Br~i , u 1 du, w 1 Dw!

5 iterative limitF2S­ 2S9

­B2D
B9r

21S­S9

­B D
B9r

G , [2.7]

where

S9 ; ~uEi 9 2 Ei 0u 2 hnc!
2, [2.7a]

h is Planck’s constant andEi 9, Ei 0 are the energies of the levels
(i 9, i 0) of the resonance eigenpair, and the iteration starts with
B9r 5 Br(i , u, w). For calculation purposes, the square bracket
in Eq. [2.13] is (11)

2S­2S9

­B2D 21S­S9

­B D 5 2~uEi 9 2 Ei 0u 2 hnc!

3 sign~Ei 9 2 Ei 0!/S­Ei 9

­B
2

­Ei 0

­B D . [2.8]

The required eigenvalues and eigenvectors of the spin-Ham-
iltonian matrix are computed by the use of the subroutine
JACOBI, which diagonalizes real symmetric matrices and is
particularly efficient when the off-diagonal elements in the SH
matrix are infinitesimally small, as is naturally the case in
homotopy (6, 13).

Calculation of first-derivative EPR spectrum.Most exper-
imental EPR data are obtained as the first derivative of the
absorbed microwave power as functions of the external mag-
netic field intensity. This is true whenBmod # (1/ 2)B1/ 2,
whereBmod is the amplitude of the modulation magnetic field.
The simulated first-derivative spectrum is calculated by taking
the derivative ofS(B, n c) (see Eq. [2.2]) with respect toB,
along with that of the lineshape. Specifically, for the Gaussian
and Lorentzian lineshapes, given by Eqs. [2.6a] and [2.6b], one
has, respectively, for the first derivative,

­FG~Bri, Bk!/­Bk 5 22KG~Bk 2 Bri!

3 exp~2~Bk 2 Bri!
2/s 2!/s 2, [2.9a]

­FL~Bri, Bk!/­Bk 5 22KLG@G 2 1 ~Bk 2 Bri!
2# 22

3 ~Bk 2 Bri!. [2.9b]

The simulated first-derivative absorption spectrum is ex-
pressed from Eq. [2.2] as

Fc~Bk, nc! 5 ­S~Bk, nc!/­Bk

5 C O
i ,u j,w j

P~i , u j, w j!

3 ­F~v i, Br~i , u j, w j, nc!, Bk!/­Bksin u j.

[2.10]

From Eq. [2.18], one has the following for the two line-
shapes using Eqs. [2.9a] and [2.9b].

Gaussian lineshape.

Fc~Bk, nc! 5 O
i

Nu^F i 9uB1xSx 1 B1ySy1 B1zSzuF i 0&u 2

3 exp@2~Bk 2 Bri!
2/s 2#

3 ~Bk 2 Bri!/s
2, [2.11a]

Lorentzian lineshape.

Fc~Bk, nc! 5 O
i

Nu^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

3 ~Bk 2 Bri!G@G 2 1 ~Bk 2 Bri!
2# 22.

[2.11b]

In Eqs. [2.11a] and [2.11b], the constant,N, may be appropri-
ately chosen, e.g.,uF c(Bk, n c)umax 5 1, whereuF c(Bk, n c)umax is
the largest magnitude of all the calculated values.

III. ESTIMATION OF SH PARAMETERS AND
LINEWIDTH FROM A POLYCRYSTALLINE SPECTRUM

AND CALCULATION OF FIRST AND SECOND
DERIVATIVES OF THE x2-FUNCTION

For application of the LSF technique proposed here, the
x2-function is defined as the sum of the weighted squares of the
differences between the calculated and measured first-deriva-
tive absorption resonances at the magnetic field valuesBk

within the magnetic-field interval considered,

x 2 5 O
k

@Fc~Bk, nc! 2 Fm~Bk, nc!#
2/s k

2, [3.1]

where F c(Bk, n c) and Fm(Bk, n c) are, respectively, the nor-
malized calculated (Eq. [2.11a] or [2.11b]) and measured val-
ues of the first-derivative EPR resonance signal, ands k is the
weight factor (related to standard deviation of the datumk).
The measured/calculated values may be normalized in such a
way that the maximum of each is equal to 1.

In the LSF technique, the vectoram, whose components are
the values of the SH parameters and the linewidth correspond-
ing to the absolute minimum of thex2-function, can be ob-
tained fromai, the vector whose components are the initially
chosen values of the SH parameters (see Appendix I) and the
linewidth (1):

am 5 a i 2 ~D0~a i!! 21D9. [3.2]

In Eq. [3.3],D9 is the column vector whose elements are the first
derivatives of thex2-function with respect to the parameters
evaluated atai andD0 is the matrix whose elements are the second
derivatives with respect to the parameters evaluated atam:
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D9m 5 S­x 2

­am
D

a i

[3.3a]

D 0nm 5 S ­ 2x 2

­an­am
D

am

. [3.3b]

Sinceam is not known initially, the elements of the matrixD0
are, in practice, evaluated with respect toai, referred to as
D0(ai). A new set of parameters, denoted by the vectoraf,
which replaces the vectoram, given by Eq. [3.2], is then
calculated,

a f 5 a i 2 ~D0~a i!! 21D9. [3.4]

af is calculated iteratively until a sufficiently small value of the
x2-function, consistent with experimental errors, is obtained.
The errors in the values of the parameters can be calculated
statistically from the matrix elements ofD0 (see Appendix II).

Calculation of D9 and D0

Equations [3.3a] and [3.3b] yield

D9m 5 2 O
k

@Fc~Bk, nc! 2 Fm~Bk, nc!#S­Fc~Bk, nc!

­am
D /s k

2

[3.5a]

D 0nm 5 2 O
k

H @Fc~Bk, nc! 2 Fm~Bk, nc!#S­ 2Fc~Bk, nc!

­an­am
D

1 S­Fc~Bk, nc!

­an
DS­Fc~Bk, nc!

­am
DJ /s k

2. [3.5b]

The first and second derivatives ofF c(Bk, n c), given by Eqs.
[2.11a] and [2.11b], with respect to the parameters appearing in
Eqs. [3.5a] and [3.5b], are as follows.

a. Gaussian lineshape.

­Fc~Bk, nc!

­am
5 O

i

Nu^F i 9uB1xSx 1 B1ySy

1 B1zSzuF i 0&u 2exp@2~Bk 2 Bri!
2/s 2#2

3 ~Bk 2 Bri!H­Bri

­am
1 ~Bk 2 Bri!

­s

­am
/sJ /s 2.

[3.6a]

In Eq. [3.6a],­s/­am 5 1/wG, for am 5 wGs, 50 otherwise.
From Eq. [3.6a] the second derivative ofF c(Bk9n c) is

­2Fc~Bk, nc!

­an­am
5 O

i

Nu^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

3 exp@2~Bk 2 Br!
2/s 2#

3 H @2~Bk 2 Bri!/s
2#H ­ 2Bri

­an­am

2
­Bri

­an

­s

­am
/s

2 ~Bk 2 Bri!
­s

­an

­s

­am
/s 2J

2 H2S­Bri

­an
1 2~Bk 2 Bri!

­s

­an
/sD

2 @2~Bk 2 Bri!/s# 2

3 F­Bri

­an
1 ~Bk 2 Bri!

­s

­an
/sGJ

3 F­Bri

­am
1 ~Bk 2 Bri!

­s

­am
/s 2G /s 2J ,

3.6b]

where account has been taken of the fact that the second
derivative ofs with respect to the parameters,an, is zero.

b. Lorentzian lineshape.

­Fc~Bk, nc!

­am
5 O

i

Nu^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

3
1

@G 2 1 ~Bk 2 Bri!
2# 2 H ­G

­am
~Bk 2 Bri!

2 G
­Bri

­am
J 1 G~Bk 2 Bri!

3 H ­

­am
~1/@G 2 1 ~Bk 2 Bri!

2# 2!J , [3.7a]

where

H ­

­am
~1/@G 2 1 ~Bk 2 Bri!

2# 2!J
5 S24FG

­G

­am
2 ~Bk 2 Bri!

­Bri

­am
G

4 @G 2 1 ~Bk 2 Bri!
2# 3D . [3.7b]

In Eqs. [3.7a] and [3.7b],­G/­am 5 1/wL, for am 5 wLG, 50
otherwise.
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From Eq. [3.7a],

­ 2Fc~Bk, nc!

­an­am
5 O

i

Nu^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

3
­

­an
~1/@G 2 1 ~Bk 2 Bri!

2# 2!

3 H ­G

­am
~Bk 2 Bri! 2 G

­Bri

­am
J

2 ~1/@G 2 1 ~Bk 2 Bri!
2# 2!

3 H ­G

­am

­Bri

­an
1

­G

­an

­Bri

­am
1 G

­ 2Bri

­an­am
J

1 H ­G

­an
~Bk 2 Bri! 2 G

­Bri

­an
J

3 H ­

­am
~1/@G 2 1 ~Bk 2 Bri!

2#!J
1 G~Bk 2 Bri!

3 H ­2

­an­am
~1/@G 21 ~Bk 2 Bri!

2#!J ,

[3.7c]

where, from Eq. [3.7b],

­ 2

­an­am
~1/@G 2 1 ~Bk 2 Bri!

2#!

5 24F ­G

­an

­G

­am
1

­Bri

­an

­Bri

­am
2 ~Bk 2 Bri!

­ 2Bri

­an­am
G

2 12FG
­G

­am
2 ~Bk 2 Bri!

­Bri

­am
G

3
­

­an
@G 2 1 ~Bk 2 Bri!

2# 2/@G 2 1 ~Bk 2 Bri!
2#.

[3.7d]

In expressing Eq. [3.7d], account has been taken of the fact that
the second derivative ofG with respect to the parameters,an,
is zero.

It is shown in Appendix III that the derivatives ofBri in Eqs.
[3.6a], [3.6b], and [3.7a] are given by

­Bri

­am
5 2 S­Ei 9

­am
2

­Ei 0

­am
DYS­Ei 9

­Bri
2

­Ei 0

­Bri
D , [3.8a]

and

­ 2Bri

­an­am
5 H2S ­ 2Ei 9

­an­am
2

­ 2Ei 0

­an­am
DS­Ei 9

­Bri
2

­Ei 0

­Bri
D

1 S ­ 2Ei 9

­an­Bri
2

­ 2Ei 0

­an­Bri
DJYS­Ei 9

­Bri
2

­Ei 0

­Bri
D 2

.

[3.8b]

In Eq. [3.8b], the required second derivatives of the eigenval-
ues are given in (1),

­ 2Ei

­an­am
5 O

k

9 KF iU ­H

­am
UFkLKFkU ­H

­an
UF iLY

~Ei 2 Ek! 1 complex conjugate, [3.9]

where, as well as in [3.10], the prime over the summation sign
indicates that the sum excludes the term withk 5 i , that is the
summation is over all the eigenvalues (and eigenvectors) of the
SH matrix, except fork 5 i . For numerical computational
convenience, Eq. [3.9] is rewritten as

­ 2Ei

­an­am
5 O

k

9 TrF ­H

­am
~uFk&^Fku!

­H

­an
~uF i&^F iu!G

4 ~Ei 2 Ek! 1 complex conjugate. [3.10]

IV. OPTIMUM SH PARAMETERS AND LINEWIDTH
ESTIMATION FROM A POLYCRYSTALLINE SPECTRUM

USING THE LSF TECHNIQUE

The approach recommended for the evaluation of the SH
parameters and linewidth using the LSF method in conjunction
with the HTMD method follows.

(i) A set of initial values of SH parameters and linewidth,
which may be obtained by an adjustment of parameters over
appropriate ranges by simulation of a polycrystalline spectrum
either by using perturbation expressions or by matrix diago-
nalization, is chosen.

(ii) The spectrum is simulated using these values and the
HTMD method (6). The correspondingx2-value is calculated
using Eq. [3.1].

(iii) The first and second derivatives of thex2-value are
calculated with respect to the parameters using Eqs. [3.3] and
[3.4].

(iv) New values of the SH parameters are then calculated
with the LSF procedure using Eq. [3.5] and the derivatives
obtained in step (iii).

(v) The x2-value is now recalculated. Convergence is
achieved if this value is less than or equal to a predetermined
value, (x2)min, consistent with experimental uncertainties, and
further iterations are not required. The SH parameter and
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linewidth values obtained in step (iv) are then the final values.
The corresponding errors of the values of the SH parameters
and linewidth are calculated statistically from the first and
second derivatives of thex2-value using the expressions given
in Appendix I.

(vi) If the x2-value calculated in step (v) is larger than
(x2)min, then steps (i)–(v) are repeated using the SH parameter
and linewidth values obtained in step (v). This procedure is
repeated untilx2 # (x2)min.

(vii) If convergence is not achieved in step (vi) or the
x2-value in any iteration is greater than that obtained in the
previous iteration, then either the initial values of the SH
parameters and linewidth used in step (i) are changed or the
binary-chop technique described in Appendix IV is then used.

V. EXTENSION TO THE CASE OF TWO
MAGNETICALLY INEQUIVALENT SPECIES

The resulting spectrum is a superposition of the spectra
corresponding to the two species with the weight factors pro-
portional to the populations of the two species in the sample
when two magnetically inequivalent species are present in a
polycrystalline sample. Consequently, there are a total of
(n1 1 n2 1 1) parameters to be fitted, wheren1 andn2 are the
number of parameters characterizing the two species, since
each species is characterized by its own set of parameters, and
the additional parameter gives the fraction (f ) of one of the
species. The resultant spectrum is expressed as

Fc~a1i, a2j, f ! 5 fFc1~a1i! 1 ~1 2 f ! Fc2~a2j!, [5.1]

where i 5 1, 2, . . . , n1, and j 5 1, 2, . . . , n2.
The experimental spectrum can be fitted to the parameters,

using the derivatives ofF c with respect to the parametersa1i ,
a2j , f. It follows from Eq. [5.1] that

­Fc/­a1i 5 f­Fc1/­a1i; [5.2a]

­Fc/­a2j 5 ~1 2 f !­Fc2/­a2j; [5.2b]

­Fc/­f 5 Fc1 2 Fc2. [5.2c]

The derivatives given by Eqs. [5.2a] or [5.2b] can be calculated
in the same way as for the case of one species, except for the
introduction of the weighting factors off and (12 f ), respec-
tively, for species 1 and 2. Using Eqs. [5.2a]–[5.2c] for the
required derivatives, the values of the parametersa1i , a2j , and
the fractionf can be evaluated by the LSF technique in con-
junction with the HTMD method, using the approach outlined
in Section IV for only one species.

The procedure for two species outlined here can be similarly
extended to the case of the presence of more than two mag-
netically inequivalent species.

VI. ILLUSTRATIVE EXAMPLE

The LSF/HTMD technique will now be illustrated to esti-
mate the SH parameters and linewidth from the 249.9-GHz
EPR spectrum for the Mn(g-picoline)4I 2 polycrystalline sam-
ple. This spectrum is characterized by a rather large value of
the zero-field splitting parameter,D. This spectrum was re-
ported by Lynchet al.(7) when the magnetic field was over the
interval 4.4–9.4 T. It exhibited only fine structure, without any
hyperfine structure. They analyzed this spectrum using the
single-crystal SH in spherical coordinates (z 5 r cosu, x 5
r sin u cos w, y 5 r sin u sin w):

H 5 gmBB~Szcosu 1 Sxsin u cosw 1 Sysin u sin w!

1 D@Sz
2 2 S~S1 1!/3# 1 E~Sx

2 2 Sy
2!, [6.1]

wheremB is the Bohr magneton,D and E are the zero-field
splitting parameters, and the (x, y, z) axes define the coordi-
nate system used, with thez-axis being coincident with the
c-symmetry axis. The fourth-order ZFS terms were not in-
cluded in the SH, because their effect is negligible at 249.9
GHz.

The values of parameters were estimated by Lynchet al. (7)
from the observed spectrum, using third-order perturbation
expressions for the energy (7, 8) and the same zero-order
relative intensity (u^M, muS1 1 S2uM9, m&u 2) (7) of theDM 5
61 “allowed” fine-structure transitions, independent of the
orientation of the external magnetic field with respect to the
axis of the various crystallites constituting the polycrystalline
spectrum. Guided by these, the following initial values of the
parameters were used:g 5 2.000,D/gmB 5 1.07 T,E/gmB 5
10 mT, DBpp 5 70 mT. (DBpp is related to the Lorentzian
linewidth (Eq. [2.6b]): DBpp 5 2G/(3)1/2 (9)). These initial
values, used in the LSF technique in conjunction with the
HTMD method, lead to the values of the SH parameters and
the linewidth:g 5 2.002186 0.00001,D/gmB 5 1.0926
0.001 T,E/gmB 5 21.27 6 0.15 mT,DBpp 5 67.926 0.05
mT. Figure 1 shows the experimental spectrum, along with the
spectrum simulated using these values.

In addition, successful application has been made of the
LSF/HTMD method as proposed here to evaluate the Mn21

parameters from 249.9- and 95-GHz data on tetrahedrally
distorted compounds: dichloro-, dibromo-, diiodo-bis(tri-
phenylphosphine) dioxide manganese complexes [14].

VII. COMPUTATIONAL TIME REQUIRED
IN THE EVALUATION OF PARAMETERS

BY THE HTMD/LSF PROCEDURE

A detailed discussion of computational times required in the
simulation of a Mn21 polycrystalline spectrum by the HTMD/LSF
procedure has been provided in Ref. (6). It was 4 h 9 min1.77 s
on the IBM RS/6000 Unix computer at the Cornell University
Theory Center (CUTC) for one simulation using a grid of 300u
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values, 90w values peru value. On the other hand, the time
required for a simulation using third-order perturbation expres-
sions was only 7 s! Since, in the LSF evaluation of parameters,
one needs the first and second derivatives of the simulated spec-
trum with respect to the parameters, calculated using the same
eigenvalues/eigenvectors as those required in the simulation, the
computational time required for one iteration in the evaluation of
parameters will be only somewhat longer than that required for
simulation. Accordingly, it turned out to be, on the average, 5 h 0
min 53 s per iteration on the same CUTC computer for a grid
consisting of 150u values (N.B., one-half of those used for
simulation), 90w values peru value, including a new simulation
of the spectrum with the final values of the parameters. Of course,
if more than one iteration is required to calculate the final set of
parameters, the overall computational time will increase corre-
spondingly. Finally, it is noted that computational time is no
longer a barrier nowadays due to readily available inexpensive
fast PC computers. Further, the number of iterations required is
reduced if the initially chosen values of the parameters are close
to those corresponding to the absolute minimum of thex2-value.
Choice of initial values is explained, in particular, in Appendix I.

VIII. DISCUSSION AND CONCLUDING REMARKS

The method for evaluating the SH parameters and the
linewidth from a CW EPR polycrystalline spectrum using
the LSF procedure, in conjunction with the HTMD method
which has been described here, is rigorous because it is not
based on any approximations. The relative intensities have
also been calculated using the exact eigenvectors, corre-
sponding to the energy levels of the resonance eigenpairs.
The first and second derivatives of thex2-function are

calculated rigorously using numerical techniques based on
the eigenvalues and eigenvectors of the SH matrix, for
which the required expressions have here been listed explic-
itly for the Gaussian and Lorentzian lineshapes. The method
has the advantage that it can be extended to include the
presence of an arbitrary number of magnetically inequiva-
lent species. In addition, it is relatively fast due to using the
homotopy technique. (For an appreciation of computer
times required, see Section VIII and (6).)

One example has been included here to illustrate the pro-
posed procedure, and three examples will appear in a separate
publication (14). Additional illustrative examples are not nec-
essary, since as discussed in (6), the ability to calculate the
EPR resonance angular variation (1) is sufficient to ensure the
simulation of a polycrystalline spectrum, which is the weighted
superposition of single-crystal spectra (6).

Although the procedure has been described for the “field-
swept” EPR spectrum, it is equally applicable to “frequency-
swept” spectrum, since the resonance condition, given by Eq.
[II.1], still remains the same. As well, by modulating the
external magnetic field,B, which remains constant, one records
the first derivative of the lineshape as discussed here for the
field-swept case.

The procedure outlined in this paper can be easily extended to
evaluate the parameters describing electron-nuclear double reso-
nance (ENDOR), solid-state nuclear magnetic resonance (NMR),
nuclear quadrupole resonance (NQR), and electron spin-echo
(ESE) envelope modulation spectra from polycrystalline samples,
as well as to include hyperfine structure (15, 16).

It is hoped that the procedure outlined in this paper will be
useful for where single-crystal samples are not available, e.g.,
metalloproteins (2), or when it is experimentally difficult to
rotate single crystals and/or record more than one EPR spec-
trum at liquid-helium temperatures, or below a phase-transition
temperature when the magnetic-axes orientations are not
known. Further, it is noted that the availability of high-speed
personal computers means that the simulation of a polycrys-
talline EPR spectrum does not require access to large compu-
tational facilities.

APPENDIX I

Choice of Initial Values Required in the LSF Procedure

For achieving convergence in the LSF procedure, it is
necessary that the initial values chosen are reasonably close
to those corresponding to the absolute minimum of the
x2-value, represented by the components of the vectoram in
Section III. The procedure will not converge if they are far
removed fromam. To this end, it is helpful to study the
features of the experimental spectrum, i.e., the peaks, and to
simulate the EPR spectrum with trial values using pertur-
bation expressions, for which one needs negligible compu-
tational time as discussed in Section VII. One can estimate
the values of the large ZFS parametersD and E from the

FIG. 1. EPR spectrum (249.9 GHz) for Mn21 in polycrystalline Mn(g-
picoline)4I2 simulated by the HTMD technique using the SH parameter and
linewidth values as obtained by the LSF technique:g 5 2.00218,D/gmB 5 1.092
T, E/gmB 5 21.27 mT,W5 67.92 mT, and the observed experimental spectrum
measured in theB-field interval 4.4–9.4 T. (The magnetic field could not exceed
9.4 T experimentally.) It is noted that the experimental peaks not corresponding to
those in the simulated spectrum belong to an unidentified impurity (7).
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positions of the peaks. Basically, as discussed in Ref. (7) in
context with the Mn21 ion, the rhombic distortion (h 5
D/E) and the value ofD can be estimated from the peak
positions. The positions of the peaks expected for the two
extreme cases are given in Table 1:h 5 0 (axial symmetry)
and h 5 1/3 (maximum rhombic distortion). As for inter-
mediate cases, one can make an educated guess by extrap-
olation between these two cases.

APPENDIX II

Expressions for Statistical Errors of Parameters

As discussed in (17), the errorsDaj in the parameters, as
evaluated by the LSF method, can be calculated statistically
from the matrixD0 formed by the matrix elements which are
the second derivatives of thex2-function with respect to the
parameters as given by Eq. [3.3b]. It is important to take into
account appropriately the weight factors,s k, for the data points
appearing in the expression for thex2-function, Eq. [3.1],
which depend upon the experimental uncertainties. Finally,

Daj 5 ~e jj!
1/ 2, [I.1]

wheree jj are the diagonal elements of the matrixe:

e 5 ~1
2D0! 21. [I.2]

It is noted that the nondiagonal elements,e jk ( j Þ k),
represent the correlations among the errors of the various
parameters (17).

APPENDIX III

Calculation of Derivative of Bri with Respect
to the Parameters and Linewidth

If one starts with the resonance condition for the transition
i 9 7 i 0 which occurs at the fieldBri ,

hn 5 Ei 9 2 Ei 0. [II.1]

Then, taking the derivative of Eq. [II.1] with respect to the
parameteram and taking explicit account of the dependence of
Ei 9, Ei 0 on am andBri , and of implicit dependence ofBri on am,
yields

­Bri

­am
5 2 S­Ei 9

­am
2

­Ei 0

­am
DYS­Ei 9

­Bri
2

­Ei 0

­Bri
D . [II.2]

The derivative of Eq. [II.2] with respect toan yields Eq. [3.8b].
Using Feynman’s theorem (1), the derivatives of the eigen-

values with respect to the parametersam andBri are

­Ei 9

­am
5 KF i 9U ­H

­am
UF i 9L [II.3]

and

­Ei 9

­Bri
5 KF i 9U ­H

­B
UF i 9L

B5Bri

. [II.4]

In Eq. [II.3], ­H/­am is the spin operator whose coefficient
is am in the SH given in Eq. [6.1]:

­H

­g
5 mBB~Szcosu 1 Sxsin u cosw 1 Sysin u sin w!,

[II.5]

­H

­D
5 @Sz

2 2 S~S1 1!/3#, [II.6]

­H

­E
5 ~Sx

2 2 Sy
2!, [II.7]

TABLE 1
Positions of Peaks for Polycrystalline Mn21 (g 5 2) Spectrum for

h (5D/E) 5 0 (Axial Symmetry) and h 5 1/3 (Maximum Ortho-
rhombic Distortion) (7)

Position of peak
(B0 5 hn/gmB,
D 0 5 D/gmB)

Transition or turning point

(h 5 0) (h 5 1/3)

B0 2 4D 0 5/2 7 3/2 (z) 5/2 7 3/2 (z)
23/2 7 25/2 (y)

B0 2 2D 0 3/2 7 1/2 (z) 3/2 7 1/2 (z)
23/2 7 25/2 (x, y) 21/2 7 23/2 (y)

B0 2 D 0 21/2 7 23/2 (x, y)
B0 1/2 7 21/2 (x, y, z) 5/2 7 3/2 (x)

(for splitting due to
higher order terms,
see Note)

3/2 7 1/2 (x)
1/2 7 21/2 (x, y, z)
21/2 7 23/2 (x)
23/2 7 25/2 (x)

B0 1 D 0 3/2 7 1/2 (x, y)
B0 1 2D 0 21/2 7 23/2 (z) 21/2 7 23/2(z)

5/2 7 3/2 (x, y) 3/2 7 1/2 (y)
B0 1 4D 0 23/2 7 25/2 (z) 23/2 7 25/2 (z)

5/2 7 3/2 (y)

Note.The lettersx, y, andz represent the orientation of the external Zeeman
field with respect to the ZFS tensor axis. It is noted that higher order terms
break the symmetry of the spectrum and cause a large splitting in the 1/27
21/2 transition into three turning points: 08 ( z) and 908 ( x, y) transitions,
along with a line at 41.8° forh 5 0. The rhombic distortion,h, splits some
lines. The positions of the 0° orz transitions are insensitive toh. But the6D
lines for axial symmetry, being in-plane transitions, are very sensitive to
rhombic distortion. These lines move ash increases and are completely lost at
full rhombic distortion. TheB0 region at full rhombic distortion maybe
characterized by a single line or a complex pattern of many lines depending on
the value ofD and linewidth. The positions of the peaks for the intermediate
values 0, h , 1/3 can be obtained by extrapolation.
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while

­H

­B
5 gmB~cosuSz 1 sin u coswSx 1 sin u sin wSy!,

[II.8]

where (u, w) is the orientation ofB with respect to thez-axis.

APPENDIX IV

Binary-chop Technique to Achieve Convergence

When the initial values of the set of parameters chosen for an
iteration, to be used in Eq. [3.2], are far from the absolute
minimum of thex2-value, the resulting value of parameters
may yield ax2-value which is greater than that obtained in the
previous iteration being corrected to a local minimum. One
may then invoke the binary-chop technique (1), in which the
LSF correction inai to calculateaf is reduced by a factor of 2
in Eq. [3.4], i.e., it is now2(D0(ai))21D9/2. If the resulting
x2-value is still greater than that obtained in the previous
iteration, this difference is again chopped by 2, and so on, until
the resultingx2-value is less than that in the previous iteration.
Finally, it is noted that the binary-chop technique may not
always work if the initial values chosen are far apart from those
corresponding to the absolute minimum of thex2-function. In
that case, one has to reexamine the choice of initial values.
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